Techniques and applications of path integration

By: Schulman, L.SMaterial type: TextTextPublication details: New York: Dover Publications Inc., c2005Description: 448 pISBN: 978-0486445281Subject(s): Quantum Field Theory | PhysicsSummary: A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material. The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadratic Lagrangians; properties of Green's functions and the Feynman-Kac formula; functional derivatives and commutation relations; Brownian motion and the Wiener integral; and perturbation theory and Feynman diagrams. The second part, dealing with applications, covers asymptotic analysis and the calculus of variations; the WKB approximation and near caustics; the phase of the semiclassical amplitude; scattering theory; and geometrical optics. Additional topics include the polaron; path integrals for multiply connected spaces; quantum mechanics on curved spaces; relativistic propagators and black holes; applications to statistical mechanics; systems with random impurities; instantons and metastability; renormalization and scaling for critical phenomena; and the phase space path integral.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current library Collection Shelving location Call number Status Notes Date due Barcode Item holds
Book Book ICTS
Physics Rack No 10 QC174.17.P27 (Browse shelf (Opens below)) Available Billno:BIL2013/1000/128431; Billdate: 2013-10-18 00155
Total holds: 0

A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material.
The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadratic Lagrangians; properties of Green's functions and the Feynman-Kac formula; functional derivatives and commutation relations; Brownian motion and the Wiener integral; and perturbation theory and Feynman diagrams.
The second part, dealing with applications, covers asymptotic analysis and the calculus of variations; the WKB approximation and near caustics; the phase of the semiclassical amplitude; scattering theory; and geometrical optics. Additional topics include the polaron; path integrals for multiply connected spaces; quantum mechanics on curved spaces; relativistic propagators and black holes; applications to statistical mechanics; systems with random impurities; instantons and metastability; renormalization and scaling for critical phenomena; and the phase space path integral.

There are no comments on this title.

to post a comment.