The wave equation on a curved space-time

By: Friedlander, F. G. (Friedrich Gerard)Series: Cambridge monographs on Mathematical Physics 2Publication details: Cambridge, UK Cambridge University Press c1975 (p2010)Description: ix, 282pISBN: 9780521136365LOC classification: QC173.59.S65Summary: This book was originally published in 1975. In Einstein's General Theory of Relativity the effects of gravitation are represented by the curvature of space-time. Physical processes occurring in the presence of gravitation must then be treated mathematically in terms of their behaviour in a curved space-time. One of the most basic of these processes is wave propagation, and this book gives a rigorous discussion of the local effects of curvature on the behaviour of waves. In the course of this discussion many techniques are developed which are also needed for a study of more general problems, in which the gravitational field itself plays a dynamical role. Although much of the book deals with four-dimensional space-time, the n-dimensional case is also treated, more briefly. The subject-matter is also of interest in other branches of mathematical physics and, as a fresh account of the classical work of Hadamard and M. Riesz, in the theory of partial differential equations.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current library Shelving location Call number Status Date due Barcode
Book Book ICTS
Rack No 9 QC173.59.S65 (Browse shelf (Opens below)) Available 02639

This book was originally published in 1975. In Einstein's General Theory of Relativity the effects of gravitation are represented by the curvature of space-time. Physical processes occurring in the presence of gravitation must then be treated mathematically in terms of their behaviour in a curved space-time. One of the most basic of these processes is wave propagation, and this book gives a rigorous discussion of the local effects of curvature on the behaviour of waves. In the course of this discussion many techniques are developed which are also needed for a study of more general problems, in which the gravitational field itself plays a dynamical role. Although much of the book deals with four-dimensional space-time, the n-dimensional case is also treated, more briefly. The subject-matter is also of interest in other branches of mathematical physics and, as a fresh account of the classical work of Hadamard and M. Riesz, in the theory of partial differential equations.